Effect of Berberine on Cell Survival in the Developing Rat Brain Damaged by MK-801
نویسندگان
چکیده
Berberine is an isoquinoline alkaloid isolated from goldenthread, Coptidis Rhizoma and shown to have many biological and pharmacological effects. We previously reported that berberine promotes cell survival and differentiation of neural stem cells. To examine whether berberine has survival promoting effect on damaged neuronal cells, we generated a cellular model under oxidative stress and an neonatal animal model of degenerating brain disease by injecting MK-801. MK801, a noncompetitive antagonist of N-methyl-d-aspartate (NMDA) receptors, acts as a neurotoxin in developing rats by inhibiting NMDA receptors and induce neuronal cell death. We found that the survival rate of the SH-SY5Y cells under oxidative stress was increased by 287% and 344%, when treated with 1.5 and 3.0µg/ml berberine, respectively. In the developing rats injected by MK801, we observed that TUNEL positive apoptotic cells were outspread in entire brain. The cell death was decreased more than 3 fold in the brains of the MK-801-induced neurodegenerative animal model when berberine was treated to the model animals. This suggests that berberine promotes activity dependent cell survival mediated by NMDA receptor because berberine is known to activate neurons by blocking K(+) current or lowering the threshold of the action potential. Taken together, berberine has neuroprotective effect on damaged neurons and neurodegenerating brains of neonatal animal model induced by MK-801 administration.
منابع مشابه
Protective Effects of Berberine on Oxygen-Glucose Deprivation/Reperfusion on Oligodendrocyte Cell Line (OLN-93)
BACKGROUND Oligodendrocytes, the myelinating glial cells of central nervous system, are highly vulnerable to ischemic-induced excitotoxic insult, a phenomenon in which calcium overload triggers cell death. Berberine is an alkaloid extracted from medicinal herbs as Coptidis Rhizoma with several pharmacological effects like inhibition of neuronal apoptosis in cerebral ischemia. METHODS We exami...
متن کاملEffect of berberine chloride on caspase-3 dependent apoptosis and antioxidant capacity in the hippocampus of the chronic cerebral hypoperfusion rat model
Objective(s): The main goal of the current research was to examine the effects of Berberine (BBR) on apoptotic signaling and hippocampal oxidative stress induced by common carotid artery occlusion. Materials and Methods: Chronic cerebral hypoperfusion (CCH) model was created by occluding the two common carotid arteries (two-vessel occlusion [2VO]) permanently. BBR (50 and 100 mg/kg/daily) was i...
متن کاملDelayed preconditioning with NMDA receptor antagonists in a rat model of perinatal asphyxia.
INTRODUCTION In vitro experiments have demonstrated that preconditioning primary neuronal cultures by temporary application of NMDA receptor antagonists induces long-term tolerance against lethal insults. In the present study we tested whether similar effects also occur in brain submitted to ischemia in vivo and whether the potential benefit outweighs the danger of enhancing the constitutive ap...
متن کاملEffects of neonatal MK-801 treatment on p70S6K-S6/eIF4B signal pathways and protein translation in the frontal cortex of the developing rat brain.
Systemic injections of MK-801, a selective NMDAR antagonist, into neonatal rats induces long-term neurochemical and behavioural changes. It has been suggested that these changes form the neurodevelopmental basis for schizophrenia-like behaviour in rats. In this study, 7-d-old rats were treated with MK-801, and their frontal cortices were examined to investigate the effects on p70S6K-S6 signal p...
متن کاملAdrenal steroids suppress granule cell death in the developing dentate gyrus through an NMDA receptor-dependent mechanism.
Treatment with the NMDA receptor antagonist MK-801 prevented the adrenal steroid-induced suppression of cell death, determined by both morphological identification of pyknotic cells and TUNEL staining, in the dentate gyrus in rat pups. This finding suggests that adrenal steroids naturally promote granule cell survival via NMDA receptor activation.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 19 شماره
صفحات -
تاریخ انتشار 2010